Yeast metabolic engineering for hemicellulosic ethanol production.

نویسندگان

  • J H Van Vleet
  • T W Jeffries
چکیده

Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of fungal xylose isomerase or modification of cofactor requirements in the yeast oxidoreductase pathway can reduce xylitol production while increasing ethanol yields, but these changes often occur at the expense of xylose utilization rates. Genetic engineering and evolutionary adaptation to increase glycolytic flux coupled with transcriptomic and proteomic studies have identified targets for further modification, as have genomic and metabolic engineering studies in native xylose fermenting yeasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses

BACKGROUND Bioethanol produced by the yeast Saccharomyces cerevisiae is currently one of the most promising alternatives to conventional transport fuels. Lignocellulosic hemicelluloses obtained after hydrothermal pretreatment are important feedstock for bioethanol production. However, hemicellulosic materials cannot be directly fermented by yeast: xylan backbone of hemicelluloses must first be ...

متن کامل

New cultive medium for bioconversion of C5 fraction from sugarcane bagasse using rice bran extract

The use of hemicellulosic hydrolysates in bioprocesses requires supplementation as to ensure the best fermentative performance of microorganisms. However, in light of conflicting data in the literature, it is necessary to establish an inexpensive and applicable medium for the development of bioprocesses. This paper evaluates the fermentative performance of Scheffersomyces (Pichia) stipitis and ...

متن کامل

The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate.

Rice straw hemicellulosic hydrolysate was used as fermentation medium for ethanol production by Pichia stipitis NRRL Y-7124. Shaking bath experiments were initially performed aiming to establish the best initial xylose concentration to be used in this bioconversion process. In the sequence, assays were carried out under different agitation (100 to 200 rpm) and aeration (V(flask)/V(medium) ratio...

متن کامل

Metabolic Engineering of Yeast for Xylose Uptake and Fermentation

Fuel ethanol production from plant biomass hydrolysates by the baker’s yeast Saccharomyces cerevisiae is of great economic and environmental significance. Costeffective production of ethanol from plant biomass should not only be based on the readily fermentable starch and sucrose fractions of plant carbohydrates, but also on the much more resistant lignocellulosic fractions. The utilization of ...

متن کامل

Evaluation of novel xylose-fermenting yeast strains from Brazilian forests for hemicellulosic ethanol production from sugarcane bagasse

Bioconversion of hemicellulosic hydrolysates into ethanol with the desired yields plays a pivotal role for the overall success of biorefineries. This paper aims to evaluate the ethanol production potential of four native strains of Scheffersomyces shehatae (syn. Candida shehatae) viz. S. shehatae BR6-2AI, CG8-8BY, PT1-1BASP and BR6-2AY, isolated from Brazilian forests. These strains were grown ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current opinion in biotechnology

دوره 20 3  شماره 

صفحات  -

تاریخ انتشار 2009